Optimizing a Cloud Contract Portfolio Using Genetic Programming-Based Load Models

نویسندگان

  • Sean Stijven
  • Ruben Van den Bossche
  • Ekaterina Vladislavleva
  • Kurt Vanmechelen
  • Jan Broeckhove
  • Mark E. Kotanchek
چکیده

Infrastructure-as-a-Service (IaaS) cloud providers offer a number of different tariff structures. The user has to balance the flexibility of the often quoted pay-by-the-hour, fixed price (“on demand”) model against the lower-cost-per-hour rate of a “reserved contract”. These tariff structures offer a significantly reduced cost per server hour (up to 50%), in exchange for an up-front payment by the consumer. In order to reduce costs using these reserved contracts, a user has to make an estimation of its future compute demands, and purchase reserved contracts accordingly. The key to optimizing these cost benefits is to have an accurate model of the customer’s future compute load – where that load can have a variety of trends and cyclic behaviour on multiple time scales. In this chapter, we use genetic programming to develop load models for a number of large-scale web sites based on real-world data. The predicted future load is subsequently used by a resource manager to optimize the amount of IaaS servers a consumer should allocate at a cloud provider, and the optimal tariff plans (from a cost perspective) for that allocation. Our results illustrate the benefits of load forecasting for cost-efficient IaaS portfolio selection. They also might be of interest for the Genetic Programming (GP) community as a demonstration that GP symbolic regression can be successfully used for modelling discrete time series and has a tremendous potential for time lag identification and model structure discovery. Sean Stijven · Ruben Van den Bossche · Kurt Vanmechelen · Jan Broeckhove Universiteit Antwerpen, Middelheimlaan 1, Antwerp, Belgium Katya Vladislavleva Evolved Analytics Europe, 2340 Beerse, Belgium Mark Kotanchek Evolved Analytics L.L.C, Midland, MI, U.S.A. Sean Stijven is also at Ghent University–iMinds B-9050 Ghent, Belgium

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimizing the Prediction Model of Stock Price in Pharmaceutical Companies Using Multiple Objective Particle Swarm Optimization Algorithm (MOPSO)

The purpose of this study is to optimize the stock price forecasting model with meta-innovation method in pharmaceutical companies.In this research, stock portfolio optimization has been done in two separate phases.The first phase is related to forecasting stock futures based on past stock information, which is forecasting the stock price using artificial neural network.The neural network used ...

متن کامل

Using Genetic Algorithm in Solving Stochastic Programming for Multi-Objective Portfolio Selection in Tehran Stock Exchange

Investor decision making has always been affected by two factors: risk and returns. Considering risk, the investor expects an acceptable return on the investment decision horizon. Accordingly, defining goals and constraints for each investor can have unique prioritization. This paper develops several approaches to multi criteria portfolio optimization. The maximization of stock returns, the pow...

متن کامل

Optimizing Stock Portfolio of Investment Companies Operating in Field of Petrochemical and Refinery Based on Multivariate GARCH Models

The main objective of this research is to optimize the stock portfolio of investment companies operating in the field of petrochemical and refining industries through minimizing risk with respect to the expected return. In this regard, first of all, the compositions of sample firm's portfolios were investigated during 2013 to 2016 and high-weight industries were selected. Then, the risk of retu...

متن کامل

Developing a multi objective possibilistic programming model for portfolio selection problem

Portfolio selection problem is one of the most important issues in the area of financial management in which is attempted to allocate wealth to different assets with controlling the return and risk. The aim of this paper is to obtain the optimum portfolio with regard to the cardinality and threshold constraints. In the paper, a novel multi-objective possibilistic programming model is developed ...

متن کامل

A Genetic Based Resource Management Algorithm Considering Energy Efficiency in Cloud Computing Systems

Cloud computing is a result of the continuing progress made in the areas of hardware, technologies related to the Internet, distributed computing and automated management. The Increasing demand has led to an increase in services resulting in the establishment of large-scale computing and data centers, in addition to high operating costs and huge amounts of electrical power consumption. Insuffic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013